Covering-based Rough sets Based on the Refinement of Covering-element

نویسندگان

  • Jianguo Tang
  • Kun She
  • William Zhu
چکیده

Covering-based rough sets is an extension of rough sets and it is based on a covering instead of a partition of the universe. Therefore it is more powerful in describing some practical problems than rough sets. However, by extending the rough sets, covering-based rough sets can increase the roughness of each model in recognizing objects. How to obtain better approximations from the models of a covering-based rough sets is an important issue. In this paper, two concepts, determinate elements and indeterminate elements in a universe, are proposed and given precise definitions respectively. This research makes a reasonable refinement of the covering-element from a new viewpoint. And the refinement may generate better approximations of covering-based rough sets models. To prove the theory above, it is applied to eight major coveringbased rough sets models which are adapted from other literature. The result is, in all these models, the lower approximation increases effectively. Correspondingly, in all models, the upper approximation decreases with exceptions of two models in some special situations. Therefore, the roughness of recognizing objects is reduced. This research provides a new approach to the study and application of covering-based rough sets. Keywords—Determinate element, indeterminate element, refinement of covering-element, refinement of covering, covering-based rough sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigranulation single valued neutrosophic covering-based rough sets and their applications to multi-criteria group decision making

In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic (SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-criteria group decision making (MCGDM).Firstly, a type of SVN covering-based rough set model is proposed.Based on this rough set model, three types of mult...

متن کامل

Structure of Covering-based Rough Sets

Rough set theory is a very effective tool to deal with granularity and vagueness in information systems. Covering-based rough set theory is an extension of classical rough set theory. In this paper, firstly we present the characteristics of the reducible element and the minimal description covering-based rough sets through downsets. Then we establish lattices and topological spaces in coveringb...

متن کامل

Poset Approaches to Covering-Based Rough Sets

Rough set theory is a useful and effective tool to cope with granularity and vagueness in information system and has been used in many fields. However, it is hard to get the reduct of a covering in rough sets. This paper attempts to get the reduct of a covering at a high speed in theory. It defines upset and downset based on a poset in a covering, studies the relationship between reducible elem...

متن کامل

Covering-based fuzzy rough sets

Many researchers have combined rough set theory and fuzzy set theory in order to easily approach problems of imprecision and uncertainty. Covering-based rough sets are one of the important generalizations of classical rough sets. Naturally, covering-based fuzzy rough sets can be studied as a combination of covering-based rough set theory and fuzzy set theory. It is clear that Pawlak’s rough set...

متن کامل

On topological covering-based rough spaces

Rough set theory, a mathematical tool to deal with vague concepts, has originally described the indiscernibility of elements by equivalence relations. Covering-based rough sets are a natural extension of classical rough sets by relaxing the partitions arising from equivalence relations to coverings. Recently, some topological concepts such as subbase, neighborhood and separation axioms have bee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012